An nxn system of ODEs looks like the following
x 1 ′ = F 1 ( t , x 1 , x 2 , … , x n ) x 2 ′ = F 2 ( t , x 1 , x 2 , … , x n ) … x n ′ = F n ( t , x 1 , x 2 , … , x n ) {\displaystyle {\begin{aligned}x_{1}'&=F_{1}(t,x_{1},x_{2},\ldots ,x_{n})\\x_{2}'&=F_{2}(t,x_{1},x_{2},\ldots ,x_{n})\\\ldots \\x_{n}'&=F_{n}(t,x_{1},x_{2},\ldots ,x_{n})\\\end{aligned}}}
In vector form, the same equation can be written as
x → ′ = F → ( t , x → ) {\displaystyle {\vec {x}}'={\vec {F}}(t,{\vec {x}})}