Prims Algorithm
From Rice Wiki
<aside class="portable-infobox noexcerpt pi-background pi-theme-default pi-layout-stacked">
Prims Algorithm
</aside>
Approach: Greedy
Implementation
for each u in V: key[u] = infinity // cost array pi[u] = infinity // from array Q = new PriorityQueue(V) key[root] = 0 while Q is not empty: u = extractMin(Q) # Reduce nodes for v in adj[u]: if v in Q and w[u,v] < key[v]: key[v] = w[u,v]
Analysis
Priority queue is slower than array when the graph is dense, so sometimes it's better to use Dijsktra's algorithm.
Proof: Greedy
Greeedy strategy: Let the greedy choice be the edge that is smallest that crosses the cut between and .
Name greedy choice: let be the smallest edge that crosses the cut from and .
Given an optimal solution with (r,y), prove that is still optimal.
is still a tree since there is no cycles created.
due to its properties as the greedy choice.
Therefore, must be optimal.